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This study is an experimental investigation of the probability density function (p.d.f.)
and the fine structure of temperature fluctuations in uniformly sheared turbulence with
a passively introduced uniform mean temperature gradient. The shear parameter was
relatively large, resulting in vigorous turbulence production and a total mean strain
up to 23. The turbulence Reynolds number was up to 253. The scalar fluctuations
grew in a self-similar fashion and at the same exponential rate as the turbulence
stresses, in conformity with predictions based on an analytical solution of the scalar
variance equation. Analytical considerations as well as measurements demonstrate
that the scalar p.d.f. is essentially Gaussian and that the scalar–velocity joint p.d.f.
is essentially jointly Gaussian, with the conditional expectations of the velocity
fluctuations linearly dependent on the scalar value. Joint statistics of the scalar and
its dissipation rate indicate a statistical independence of the two parameters. The
fine structure of the scalar was invoked from statistics of derivatives and differences
of the scalar, in both the streamwise and transverse directions. Probability density
functions of scalar derivatives and differences in the dissipative and the inertial
ranges were strongly non-Gaussian and skewed, displaying flared, asymmetric tails.
All measurements point to a highly intermittent scalar fine structure, even more
intermittent than the fine structure of the turbulent velocity.

1. Introduction
The study of the fine structures of the velocity field and of transported scalars,

such as temperature and concentration of contaminants, have long occupied a central
place in turbulence research, due both to their importance in a variety of technological
applications and to the key role that they play in the understanding of turbulence. A
common theme in most of these studies is the theory of local isotropy, first presented
for a velocity field by Kolmogorov (1941) and for a passive scalar advected by
turbulence by Obukhov (1949) and Corrsin (1951). Although this theory has been
remarkably successful in providing scaling laws for the fine structure, some of its
predictions have been found to disagree with the experimental evidence. A hypothesis
to explain such discrepancies attributes them to the ‘spottiness’ of the fine structure,
a phenomenon referred to as ‘internal intermittency’. During the past few decades,
several theoretical arguments have been put forward to quantify internal intermittency
and to devise corrections to Kolmogorov’s predictions (e.g. Frisch 1995), but the issue
does not appear to have been settled. The verification of these corrections relies
heavily on comparisons with specially conceived experiments.

The study of passive scalar mixing is, experimentally, more accessible than that
of momentum mixing, due to the simpler forms of scalar properties, compared
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to corresponding velocity properties. For example, the rate of destruction of scalar
fluctuations by molecular mixing, commonly referred to as ‘scalar dissipation rate’ has
only three components, compared to the 12 independent components of the turbulent
kinetic energy dissipation rate. Notwithstanding the qualitative similarities between
the fine structures of the velocity and scalar fields, it has been found that the scalar
field is generally ‘more intermittent’ than the velocity field in both the dissipative
and the inertial spectral ranges. This is clearly demonstrated by the fact that the
flatness of the streamwise scalar derivative is significantly larger than the flatness of
the corresponding velocity derivative and has a stronger dependence on the Reynolds
number (Sreenivasan & Antonia 1997). An indicator of the local anisotropy of
scalar fields is the significant skewness in their streamwise derivatives, a phenomenon
explained by the presence of large-scale, ramp-like structures (Gibson, Friehe &
McConnell 1977; Sreenivasan, Antonia & Britz 1979; Sreenivasan & Tavoularis 1980;
Tavoularis & Sreenivasan 1981). The skewness and flatness of transverse derivatives
of the scalar have also been measured in different homogeneous and inhomogeneous
flows (Sreenivasan, Antonia & Danh 1977; Tavoularis & Corrsin 1981b; Thoroddsen
& Van Atta 1992; Tong & Warhaft 1994; and Mydlarski & Warhaft 1998). The
skewness in these flows was found to be non-zero, in disagreement with local isotropy.
Holzer & Siggia (1994) attributed this non-zero skewness to sharp scalar fronts, which
they called a ‘ramp-cliff’ structure. This structure has also been confirmed numerically
by Pumir (1994) and experimentally by Tong & Warhaft (1994). The local anisotropy
of the scalar field at moderate Reynolds numbers has also been demonstrated by
the inequality of the different components of the scalar dissipation rate and the
deviation of the measured scalar dissipation rate from its locally isotropic estimate
(Sreenivasan et al. 1977; Tavoularis & Corrsin 1981b; Antonia & Browne 1986;
Thoroddsen & Van Atta 1996; Mydlarski & Warhaft 1998). In shear flows, the scalar
spectrum slope in the inertia range was found to deviate significantly from the locally
isotropic slope of −5/3, even at relatively large Reynolds numbers, at which the
streamwise velocity spectrum slope approached −5/3 (Sreenivasan 1991), although in
grid-generated turbulence the opposite was observed (Jayesh, Tong & Warhaft 1994;
Mydlarski & Warhaft 1998). On the other hand, Antonia et al. (1996, 1997) found
that the second-order structure functions of the scalar and velocity at Reλ 6 230 had
comparable variations, with their inertial ranges displaying a 2/3-law dependence.
Finally, Mydlarski & Warhaft (1998) concluded that the inertial range of the scalar
field was more intermittent than that of the velocity field, based on the observation
that, in the inertial range and for the same Reynolds number and separation distance,
the probability density function (p.d.f.) of the streamwise difference of the velocity
was less flared than that of the scalar.

Studies of passive scalar transport and mixing, as well as studies of chemical
reactions and combustion in turbulent flows, have extensively used the p.d.f. approach,
because, unlike the conventional moment-based formulations, the equations governing
the p.d.f. of the scalar fluctuations do not require ‘closure’ models, other than those
used for the velocity field (Pope 1985). A general conservation equation for the
scalar p.d.f. may be derived following the approach introduced by Lundgren (1967).
Under any conditions of the mean velocity and scalar fields, this equation includes a
molecular diffusion term that potentially couples the fine structure and the large-scale
features of a turbulent field, because it explicitly contains the expectation of the
scalar dissipation rate conditional upon the scalar value (Dopazo & O’Brien 1974;
Pope 1976; Dopazo 1976). This quantity was modelled based on the ‘conditionally
Gaussian’ assumption (Dopazo & O’Brien 1974, 1975; Dopazo 1976), which makes
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use of local isotropy, but, in these models, the scalar p.d.f. failed to relax to the
Gaussian distribution. This was subsequently achieved by the use of the mapping
closure technique (Chen, Chen & Kraichnan 1989; Gao 1991; Gao & O’Brien 1991;
O’Brien & Jiang 1991; Valiño 1995). Measurements of the conditional expectation
of the scalar dissipation in non-reacting, inhomogeneous, shear flows have been
presented by Kailasnath, Sreenivasan & Saylor (1993), Anselmet, Djeridi & Fulachier
(1991, 1994) and Mi, Antonia & Anselmet (1995). While Anselmet et al. (1994)
suggested that the scalar dissipation was independent of the scalar fluctuations in
regions where the scalar p.d.f. was Gaussian, Mi et al. (1995) argued that, for this to
happen, the flow had to be locally isotropic as well. In a DNS study of homogeneous
flows, Eswaran & Pope (1988) found that the long-time scalar dissipation rate was
independent of the scalar. In contrast, Jayesh & Warhaft (1992) reported that, in
grid-generated turbulence, the conditional expectation of scalar dissipation depended
on the initial scalar field when a mean scalar gradient was imposed on the flow, but
not when a uniform mean scalar field was considered.

In isotropic turbulence with a uniform mean scalar, the rate of change of the
scalar p.d.f. depends solely on the conditional expectation of the scalar dissipation.
However, when a mean scalar gradient is present, additional terms appear, that
contain the expectation of velocity components conditional upon the scalar value.
Although Sahay & O’Brien (1993) and Overholt & Pope (1996) have shown that
such terms have an effect on the evolution of the scalar p.d.f., no measurements of
conditional velocity statistics have been reported, with the exception of the results of
Tong & Warhaft (1995). The effect of mean shear on the different terms of the scalar
p.d.f. equation has not yet been investigated, either analytically or experimentally.

The Gaussianity, or non-Gaussianity, of the scalar p.d.f. remains a controversial
issue. While earlier studies (Tavoularis & Corrsin 1981a; Kerr 1985; Eswaran &
Pope 1988; and others) confirmed Gaussianity, measurements in thermal convection
at high Rayleigh numbers by Castaing et al. (1989) showed temperature fluctuations
with p.d.f. having exponential tails in the so-called ‘hard turbulence regime’. This
result motivated others (Sinai & Yakhot 1989; Yakhot 1989; Valiño, Dopazo & Ros
1994) to obtain modelled solutions of a scalar p.d.f. that exhibited tails broader than
Gaussian. Pumir, Shraiman & Siggia (1991) and Holtzer & Pumir (1993) developed
a one-dimensional model which predicted exponential tails if the scalar were subject
to a mean scalar gradient. The analytical studies prompted a renewed interest in
measurements of passive scalar p.d.f., which, however, intensified the controversy.
While Gollub et al. (1991) and Jayesh & Warhaft (1991, 1992) measured exponential
tails when the Reynolds number exceeded a transition value, Thoroddsen & Van
Atta (1992) and Mydlarski & Warhaft (1998) reported scalar p.d.f. that were nearly
Gaussian. Furthermore, Kerstein & McMurtry (1994) showed that the form of the
scalar p.d.f. depended strongly on the statistics of the advecting velocity field and
Ching & Tsang (1997) found that the scalar p.d.f. had exponential tails even when
the mean scalar gradient was zero and that the shape of the scalar p.d.f. depended
on the ratio of diffusion time to velocity correlation time. Jaberi et al. (1996) applied
a linear eddy model in stationary turbulence as well as DNS in decaying and forced
turbulence and found that the p.d.f. of the scalar depended greatly on the initial
conditions: when the initial scalar integral length scales were larger than the initial
velocity integral scales or when the initial scalar field had a large proportion of
small-scale contributions, the scalar p.d.f. would evolve towards distributions flatter
than Gaussian. Moreover, the same DNS showed that a linear mean scalar field was
not a sufficient condition for a non-Gaussian scalar p.d.f. to occur even at Reynolds
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numbers larger than that suggested by Jayesh & Warhaft (1991, 1992). The same
conclusions were also reached by Overholt & Pope (1996) in a DNS study of a passive
scalar subjected to a mean scalar gradient in isotropic, stationary turbulence. Most
recently, Warhaft (2000) argued that the reason for the absence of exponential tails
in the scalar p.d.f. in the studies mentioned above is that their flow widths were not
large enough to allow extreme scalar excursions to occur.

In summary, the literature contains a substantial number of experimental studies
of the fine structure of scalars in turbulent flows. Many of these studies have been
conducted in grid-generated turbulence, without or with a mean scalar gradient. The
former case contains no production mechanism for either the velocity or the scalar
fluctuations, and thus both decay. The latter case contains a production mechanism for
scalar fluctuations, but not for the turbulent kinetic energy; consequently, the scalar
field would probably evolve differently from the velocity field, which complicates a
comparison of the corresponding fine structures. A number of other studies of scalar
mixing have been conducted in different free and bounded shear flows. While such
studies have undoubtedly produced many useful results, they are also complicated
by their inherent inhomogeneity and by differences in the mechanisms of production
and evolution of the velocity and scalar fields. All these problems may be avoided
by considering the case of uniformly sheared, nearly homogeneous turbulence with a
uniform mean scalar gradient, in which the turbulent kinetic energy and the scalar
variance have similar balance equations and should grow at comparable rates. This
configuration has been studied in detail experimentally by Tavoularis & Corrsin
(1981a, b, hereafter referred to as TC), who have presented moments, correlations,
spectra and p.d.f.s of the scalar and its derivatives, as well as addressed the issue of
local isotropy. Their results have been used extensively in many different contexts;
however, since they were collected, more than two decades ago, a number of new
issues and controversies have risen, which TC could not have anticipated. The present
experiments have been conducted in a flow which is, in broad terms, the same as
that in the TC experiments. However, in view of the previous experience, a number
of improvements have been introduced. In particular, in the present flow, the initial
scalar field has been decoupled from the initial velocity field by the use of a heating
screen inserted in the developed part of the flow. The evolutions of the scalar moments
and correlations in the present flow have been documented and compared with the
TC results. Emphasis has been placed on the fine structure and the p.d.f. of the scalar,
including statistics of scalar differences in the inertial range. The present paper also
contains analyses of the evolutions of the scalar variance and p.d.f., based on the
corresponding governing equations. It is hoped that the present results will contribute
to the understanding of scalar mixing in shear flows and will help resolve some of
the surrounding controversies.

2. Analytical results
2.1. Self-similar evolution of the scalar field

Consider a stationary, transversely homogeneous, uniformly sheared turbulent flow,
with a mean velocity gradient dŪ1/dx2. Then, the turbulent kinetic energy equation
is simplified to (TC)

Ū1

d( 1
2
q2)

dx1

= P − ε, (1)
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where the turbulent kinetic energy per unit mass is 1
2
q2 = 1

2
uiui, its production rate

is P = −u1u2 dŪ1/dx2 and its dissipation rate is ε. Tavoularis (1985) has shown that,
under such conditions, there is a self-similar, asymptotic development state in which
all relevant dimensionless ratios remain constant and all Reynolds stresses, as well as
q2, grow exponentially, for example (see also Tavoularis & Karnik 1989)

q2 = q2
r exp(κ(τ− τr)), (2)

and

u′2i = u2
ir exp(κ(τ− τr)), (3)

where the subscript r denotes values at a reference position within the asymptotic state,
the total strain is defined as τ = (x1/Ū1) dŪ1/dx2 and the dimensionless coefficient κ
is defined

κ = −u1u2

q2

(
1− ε

P

)
. (4)

Further, consider the above flow with a passively superimposed, stationary random
scalar field having a uniform mean gradient dT̄ /dx2 and transversely uniform fluxes

θui, i = 1, 2, 3. Then (TC), the equation governing the mean squared scalar fluctuations,
θ′2 (primes indicate standard deviations), may be simplified to

Ū1

d( 1
2
θ′2)

dx1

= Pθ − χ, (5)

where the rate of production of the scalar fluctuations is Pθ = −θu2 dT̄ /dx2 and

their mean rate of dissipation is χ = γ(∂θ/∂xi)(∂θ/∂xi), with γ being the molecular
diffusivity, or thermal diffusivity. Extending Tavoularis’ (1985) analysis to include the
scalar field, one may consider a self-similar, asymptotic state, in which all relevant
dimensionless ratios for the scalar, including the correlation coefficient ρ2θ = θu2/θ

′u′2
and the ratio χ/Pθ , are constant. Then, it is easy to show that the solution of equation
(5) is

θ′2 = θ2
r exp(κ(τ− τr)) (6)

where the reference temperature θr is

θr =
−4ρ2θu2r(dT̄ /dx2)(1− χ/Pθ)

κ dŪ1/dx2

. (7)

This demonstrates that the scalar variance should grow asymptotically at the same
rate as the Reynolds stresses. Its value should also be independent of the initial level
of the scalar fluctuations, so that the scalar field would be entirely determined by the
mean velocity gradient, the initial Reynolds stress level, the mean scalar gradient, and
the (possibly universal) values of the dimensionless ratios ρ2θ and χ/Pθ .

Finally, if the scalar field were locally isotropic, its mean destruction rate would be

χli = 6γ
θ′2

λ2
θ1

;

then it follows that the Corrsin microscale λθ1 must be independent of x1. Following
Tavoularis’ (1985) comments on the Taylor microscale λ, one may show that λθ1

must vary in the x2-direction to compensate for the transverse variation of Ū1 in
equation (5).
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2.2. A balance equation for the scalar p.d.f.

Following Lundgren’s (1967) approach, one may define the p.d.f. of a random scalar
function of position and time, θ(xi, t), as

p(ψ, xi, t) = 〈δ[θ(xi, t)− ψ]〉, (8)

where ψ is the scalar space, δ is Dirac’s delta function and the brackets 〈 〉 indicate
ensemble averaging. An equation for the evolution of the p.d.f. may be obtained
by taking the time derivative of equation (8) and substituting the quantity ∂θ/∂t
by its balance from the equation governing the scalar fluctuations. Without further
assumptions, but after a number of statistical manipulations, one may obtain the
general equation for the scalar p.d.f. as

∂p

∂t
+ Ūj

∂p

∂xj
= −∂(〈uj |θ = ψ〉p)

∂xj
− ∂θuj

∂xj

∂p

∂ψ

+
∂T̄

∂xj

∂(〈uj |θ = ψ〉p)
∂ψ

− ∂2(〈εθ|θ = ψ〉p)
∂ψ2

+ γ
∂2p

∂xj∂xj
. (9)

Details for the derivation of equation (9), not readily available in published references,
may be found in the dissertation by Ferchichi (2000). In this equation, 〈uj |θ = ψ〉
and 〈εθ|θ = ψ〉 denote, respectively, the expectations of the velocity fluctuations and
of the fluctuating scalar destruction rate, εθ = γ(∂θ/∂xi)(∂θ/∂xi), conditional upon
the scalar value. The different terms in equation (9) may be assigned the following
physical significance.

left-hand side: total rate of change of the p.d.f.;
1st term, right-hand side: turbulent transport of the p.d.f. in physical space;
2nd term, right-hand side: transport of the p.d.f. by gradients of the turbulent fluxes;
3rd term, right-hand side: turbulent transport of the p.d.f. in probability space;
4th term, right-hand side: molecular diffusion of the p.d.f. in probability space;
last term, right-hand side: molecular diffusion of p.d.f. in physical space.
For a turbulent flow and a scalar field satisfying the conditions outlined in the

previous section, the scalar p.d.f. would be independent of x2, x3 and t, and equation
(9) may be simplified to

Ū1

∂p

∂x1

= −∂(〈u1|θ = ψ〉p)
∂x1

− dθu1

dx1

∂p

∂ψ

+
dT̄

dx2

∂(〈u2|θ = ψ〉p)
∂ψ

− ∂2(〈εθ|θ = ψ〉p)
∂ψ2

+ γ
∂2p

∂x2
1

. (10)

2.3. Gaussianity of the scalar p.d.f.

At first, let us explore the admissibility of the Gaussian p.d.f. as a solution of equation
(10). Let g(η) represent the standard Gaussian function g(η) = (1/

√
2π)e−η/2. Then, a

Gaussian, self-preserving scalar p.d.f. for a stationary, transversely homogeneous flow
must have the form

p(ψ, x1) =
1

θ′(x1)
g(η), (11)

where η = ψ/θ′(x1). Further, assume that the conditional expectations of u1 and u2

are linearly related to the value of the scalar, namely that

〈ui|θ = ψ〉 = ρiθu
′
iη, (12)
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and that the scalar dissipation rate is independent of the value of the scalar, such
that

〈εθ|θ = ψ〉 = χ. (13)

Notice that the above assumptions would be satisfied by pairs of (ui, θ) and (εθ, θ)
that are jointly Gaussian (the latter pair must also be uncorrelated), but also by more
general classes of joint p.d.f. Substituting the above results into equation (10) and
performing some simple algebraic manipulations, one may derive the equation[

Ū1

d( 1
2
θ′2)

dx1

− Pθ + χ

]
(1− η2) + 3ρiθu

′
iη

d( 1
2
θ′2)

dx1

+ γ

[
−θ′d

2θ′

dx2
1

+ 2

(
dθ′

dx1

)2
]

= 0.

(14)

In this expression, it is easy to see that the second term would be of lower order
of magnitude than the mean convection term; in the present experiments, the ratio
of these two terms is less than 5.7% for η < 0.62 and η > 1.62; the fact that the
first term vanishes at η = 1 is not of concern in an order-of-magnitude analysis.
Furthermore, for large Reynolds number, the last term would also be negligible; in
the present experiments, its ratio to the mean convection term is 8.4× 10−8/(1− η2),
which is indeed negligible, except in the near vicinity of η = 1. Then, equation (14)
would be reduced to equation (5), which is satisfied within the present approximation.
In conclusion, under the current approximations and conditions, a Gaussian p.d.f.
satisfies the scalar p.d.f. equation in uniformly sheared turbulence with a uniform
mean scalar gradient.

In view of the above analysis, and with the use of direct experimental evidence, one
can prove that the Gaussian p.d.f. is the only solution of equation (10), within the
present context. First, one may omit the first, second and last terms on the right-hand
side of equation (10) by comparison to the left-hand side, by direct substitution of
experimental values and without the need for further assumptions. Then, the p.d.f.
equation may be further simplified to

Ū1

∂p

∂x1

=
dT̄

dx2

∂(〈u2|θ = ψ〉p)
∂ψ

− ∂2(〈εθ|θ = ψ〉p)
∂ψ2

. (15)

This equation is analogous to equation (5) for the scalar variance. However, due to
the conditional expectations appearing in it, it cannot be solved for the p.d.f. without
further assumptions. The desired solution must be self-similar, which implies that

p(ψ, x1) =
1

θ′(x1)
f(η), (16)

where f(η) is a function of η = ψ/θ′(x1). Once more resorting to the experimental evi-
dence, one may use expressions (12) and (13) and some simple algebraic manipulations
to transform equation (15) into the form

d2f

dη2
+ η

df

dη
+ f = 0, (17)

which has the general solution

f(η) = c1e
− 1

2 η
2

η∫
0

et
2/2dt+ c2e

−η2/2. (18)
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Figure 1. Sketch of the wind tunnel test section illustrating the shear generator
and the heating system.

Both terms in this expression vanish as η → ±∞ (Abramowitz & Stegun, 1972), but
the first term does so more slowly than the second term, irrespectively of the values of
the constants c1 and c2. Therefore, if c1 > 0, f(η) would become negative as η → −∞,
which is impossible for a p.d.f. Similarly, if c1 < 0, f(η) would become negative as
η → +∞. Thus, the only acceptable value is c1 = 0. Finally, in order to satisfy the
p.d.f. requirement

∫ ∞
−∞ f(η)dη = 1, one must have c2 = 1/

√
2π. In conclusion, the only

acceptable solution of equation (17) is the Gaussian function.

3. Experimental facility and instrumentation
The experiments were conducted in a wind tunnel, which is sketched in figure 1.

The mean shear was produced by a shear generator (Karnik & Tavoularis 1987),
installed immediately following the 16:1 contraction, and comprising a set of 12
separate channels, each 25.4 mm high, separated by aluminium plates, 1.6 mm thick
and 150 mm long. One or more strips of screens with various mesh sizes and solidities
were stretched across each channel and adjusted to produce a uniform shear. A flow
separator, consisting of 12 parallel plates, 610 mm long and aligned with those of the
shear generator, was inserted into the flow in order to make the larger scales of the
flow uniform on the transverse plane. The test section had a height of h = 305 mm,
a nominal width of 457 mm wide and a length of 5180 mm. The sidewalls of the
downstream half of the test section diverged slightly to compensate for boundary
layer growth.

The heating system was mounted on a wooden frame that was inserted normal to
the flow at a position 792 mm (2.6h) downstream from the exit of the flow separator,
which was taken as the origin of the x1-axis. It consisted of 47 heating ribbons
(Nicrome 60), stretched horizontally across the frame with the use of springs. These
ribbons were 0.8 mm wide, 0.08 mm thick and 6.3 mm apart from each other; electric
current was supplied to each pair connected in series by an individual variable
transformer which was adjusted to produce the desired mean temperature profile.
A thin copper plate, machined into thin strips separated by insulated sections, was
epoxied to the top wall of the test section and was heated electrically to the local
mean temperature; this prevented heat losses from the warmer part of the flow and
thus eliminated the thermal boundary layer from the top wall and improved the
uniformity of the mean temperature gradient. To further minimize heat losses, the
test section was insulated using fibreglass sheets.

The velocity fluctuations were measured using a specially made, sub-miniature
cross-wire probe, with sensors having a diameter of 5 µm, a length of 0.7 mm and
a nominal distance of about 1 mm. Their outputs were corrected for temperature
variations, using the cold-wire signal. The mean temperature of the heated flow
was measured by glass-coated, thermistor mini-probes (Fenwal Electronics, 2000).
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Temperature fluctuations were measured with cold-wire probes, with sensors made
of 1 µm diameter, 100% platinum wire, and having a typical length of about 0.5 mm.
For the measurement of temperature–velocity correlations, a separate cold wire was
positioned next to the cross-wire probe, at a distance of about 1 mm from the nearest
hot wire. Transverse temperature derivatives and differences were measured by a
pair of parallel cold wires with adjustable transverse separation distances. For the
transverse derivatives, the two sensors were separated by about 0.5 mm. All cold
wires were operated by home-made, constant-current, electronic circuits, powered
by dry cell batteries to minimize the electronic noise and the power line frequency
contamination of the signals. At the current of 0.4 mA used, the cold wires showed a
negligible sensitivity to velocity.

The hot-wire signals were low-pass filtered at a cut-off frequency of 8 kHz (3 dB
point), the cold-wire signal was low-pass filtered at 10 kHz and all signals were
digitized simultaneously at a frequency of 20 kHz, using a 16-bit analog-to-digital
converter (IOTECH, 488/16). The discretized cold-wire signals were further low-pass
filtered using a non-recursive, zero-phase-shift, digital filter at a cut-off frequency of
5 kHz prior to processing. At this cut-off frequency, the signal-to-noise ratio varied
from 47 to about 90. To ensure a good statistical representation of the large scales of
the flow, 60 records of 262 144 data points were collected.

Streamwise derivatives and differences were evaluated using Taylor’s ‘frozen flow’
approximation. The streamwise Taylor and Corrsin microscales were, respectively,
calculated as

λ11 = Ū1[u
2
1/(∂u1/∂t)2]1/2, λθ1 = Ū1[2θ2/(∂θ/∂t)2]1/2,

while the transverse Corrsin microscale was measured as

λθ2 = [2θ2/(∂θ/∂x2)2]1/2.

The scalar dissipation rate was evaluated from its streamwise component (Kailas-
nath et al. 1993; Jayesh & Warhaft 1992). Typical values of the Taylor and Corrsin
microscales were λ11 = 5.2 mm, λθ1 = 4.6 mm and λθ2 = 3.0 mm throughout the
measuring range, while the Kolmogorov microscale η was found to decrease from
about 0.20 mm to about 0.17 mm along the measuring section. The Kolmogorov
frequency for convection of turbulence eddies, fK = Ū1/2πη, increased from about
5.2 kHz to about 6.2 kHz. The Corrsin–Obukhov microscale, corresponding to the
dissipative scales of the temperature variance and defined as ηθ = η Pr−3/4, decreased
from about 0.23 mm to about 0.21 mm. Accordingly, the Kolmogorov frequency for
temperature fluctuations, fKθ = Ū1/2πηθ , increased from about 4.0 kHz to about
4.9 kHz.

The mean-square temperature derivative was corrected for the averaging effect
of a finite-length sensor. This correction, estimated using the results of Wyngaard
(1971), was, in the worst case, about 10%, which resulted in a downward correction
to the Corrsin microscale by about 5%. Another possible source of contamination of
cold-wire measurements is heat conduction to the supports. This effect is negligible
for sensor length-to-diameter ratios larger than 1500 (Browne & Antonia 1987). For
the present 1 µm sensors, this would require a length of 1.5 mm, which would result
in an error, due to the finite length effect, of about 38% in estimating the mean-
square derivative (Wyngaard 1971). Further reducing the diameter of the cold wire
would make it very fragile and extremely hard to handle and repair, particularly
for pure platinum sensors. For this reason, and in view of the fact that it is the
spatial resolution of the cold wire, and not conduction to supports, that makes the
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predominant contribution to the uncertainty in estimating temperature derivative
statistics (Mydlarski & Warhaft 1998), the length-to-diameter ratio of about 500
used here was considered to be a good compromise. For a comparison, Mydlarski &
Warhaft (1998) used a cold wire with a ratio of about 560. The cold-wire separation
used for transverse derivative measurements was about 2ηθ , which is within the
acceptable range (Antonia & Mi 1993; Anselmet et al. 1994; and Tong & Warhaft
1994).

4. Experimental results
4.1. The mean fields

In the absence of the heating system, the turbulent flow was essentially the same as
that documented in earlier reports on uniformly sheared flow in the same facility
(Tavoularis & Karnik 1989; Ferchichi & Tavoularis 2000). The use of the heating
system caused a small pressure drop, which resulted in a reduction of the mean shear
(see Karnik & Tavoularis 1987, for a detailed discussion of this effect). The heating
elements also produced some additional turbulence, which was allowed to decay
before the measuring section. The streamwise position of insertion of the heating
system was far enough from the flow separator to permit flow development towards
its asymptotic structure, and also far enough upstream to permit the growth of strong
temperature fluctuations under the influence of the mean scalar gradient. It was
observed that, for centreline speeds higher than about 7 m s−1, some heated ribbons
started vibrating with audible sound (‘singing’). For this reason, and due to power
limitations of the electric transformers, the flow speed on the centreline of the tunnel
was selected to be Uc = 6.6 m s−1, while the mean temperature rise on the centreline
was fixed at ∆Tc = 1.37 K. This required heating of the ribbons at powers varying
from about 5 W to about 720 W. Under such relatively low overheats, buoyancy effects
were expected to be negligible so that temperature can be treated as a passive scalar.
As an additional confirmation of scalar passivity, we have computed that both the
flux and the gradient Richardson numbers were of the order of 10−4, which is far too
small for buoyancy to play any role in scalar fluctuation production (TC).

Figure 2(a) shows transverse profiles of the mean velocity at different downstream
locations. These profiles displayed good linearity and downstream constancy in the
core of the test section. The transverse mean velocity Ū2 varied between −1%
and −4% of Uc. The mean shear was, typically, dŪ1/dx2 ≈ 40 s−1 and the shear
parameter, ks = (1/Uc)dŪ1/dx2, was 6.0 ± 0.15 m−1, measurably lower than the
value 7.1 ± 0.19 m−1 in the absence of the heating system (Ferchichi & Tavoularis
2000). Typical transverse profiles of the mean temperature at different downstream
locations are shown in figure 2(b). These profiles also displayed good linearity, with
a nearly constant mean temperature gradient dT̄ /dx2 ≈ 7.8 K m−1 in the core of the
wind tunnel. A summary of experimental values in the present study and the TC
experiments is provided in table 1. The total strain experienced by the flow is defined
as τ = ksx1.

A comparison of the two studies shows comparable mean shear rates but a
much lower convection speed in the present work. This resulted in a significantly
higher shear parameter in the present experiments, which implies more vigorous
turbulence production. As a result, the total strain experienced by the turbulence
within the present apparatus was τmax = 23.0, while the corresponding value in the
TC experiments was merely τmax = 12.6. The turbulence intensity at the exit of the
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TC flow Present flow
Parameter (τ = 12.6) (τ = 23.0)

Uc (m s−1) 12.4 6.6
dŪ1/dx2 (s−1) 46.8 39.6
ks (m−1) 3.8 6.0
u′1/Uc 0.056 0.114
u′2/u′1 0.55 0.58

−u1u2/u
′
1u
′
2 0.45 0.45

L11,1 (mm) 57 49
λ11 (mm) 5.8 5.2

Reλ = u′1λ11/ν 266 253
η (mm) 0.18 0.17

Heating system rods ribbons
Position of h.s. τ = 0 τ = 4.8

∆Tc (K) 1.50 1.37
dT̄ /dx2 (K m−1) 9.5 7.8

θ′/∆Tc 0.083 0.080
θ′/(dT̄ /dx2) (m) 0.013 0.014

θu1/θ
′u′1 0.59 0.56

−θu2/θ
′u′2 0.45 0.50

λθ1/λ11 0.88 0.88
λθ2/λθ1 0.73 0.66
Lθ1/L11,1 0.76 0.74
ηθ (mm) 0.23 0.21

(χ/Pθ)balance 0.81 0.80
(χ/Pθ)direct 0.58 0.57
χli/Pθ 0.45 0.41

Table 1. Summary of measured parameters in the experiments of Tavoularis & Corrsin (1981a, b)
and the present experiments.
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Figure 2. Transverse profiles of (a) the dimensionless mean velocity Ū1/Uc and (b) the mean
temperature T̄ /∆Tc in the heated flow. x1/h = 7.6 (◦), 9.3 (�) and 12.6 (4).
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(f) u2θ/u
′
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′. x1/h = 7.6 ( e), 9.3 (�) and 12.6 (4).

present test section was twice as high as the TC value. Similar observations may
be made for the mean scalar fields. Although the mean temperature rises and the
mean temperature gradients were comparable in the two experiments, the differences
in convection speeds also rendered the present scalar production mechanism nearly
twice as vigorous.

4.2. Moments and lengthscales

A verification of the approximate transverse homogeneity of the velocity and scalar
fields is provided in figure 3, which shows transverse profiles of the r.m.s. velocity
and temperature fluctuations and the dominant shear stress and heat flux correlation
coefficients at three representative downstream stations. The transverse variations of
all parameters were less than ±15% in the central half of the wind tunnel cross-
section, while, in some cases, the variations were considerably lower. The downstream
evolutions of the two normal turbulent stresses and the temperature variance are
shown in figure 4(a). Near the heating screen, its effect on the growth rate of the
turbulence and, particularly, on that of the temperature fluctuations was notice-
able, but, beyond a distance corresponding to a total strain increment of about 10
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Figure 4. Downstream evolution of the dimensionless turbulent stresses and temperature fluctua-
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c ;
the dashed line in (a) indicates the location of the heating system, while solid lines in both parts
indicate fitted exponential expressions.

(τ > 15), both the turbulence and the scalar fluctuations appeared to be dominated
by production by the mean gradients and all second moments grew exponentially.
Exponential expressions fitted independently to the measured evolutions of the two
normal turbulent stresses for 15.7 < τ < 23.0 gave

u2
1

U2
c

= 0.00187 e0.0846τ and
u2

2

U2
c

= 0.000631 e0.0846τ,

showing that both grew at the same rate, which was somewhat slower than their
growth rate in the absence of the heating system (Ferchichi & Tavoularis 2000).
This difference may be attributed to the reduction in the shear parameter ks from
the higher value in the undisturbed shear flow, due to the pressure drop across the
heating wire array (Karnik & Tavoularis 1987). The ratio of the rms velocities u′2/u′1
measured here was close to the TC value (table 1).

The temperature variance for 15.7 < τ < 23.0 (figure 4a) was represented well by
the fitted exponential expression

θ2

∆T 2
c

= 0.000771 e0.00882τ.

The temperature variance growth exponent was essentially the same (4% higher) as
the exponent of the turbulent stresses, thus confirming that the scalar fluctuation field
grew in a self-similar fashion that was imposed by the turbulence and according to
equation (6).
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′
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′: e, present measurements; •, TC; dashed lines have been plotted only as an aid to

the eye.

At this point is seems worthwhile to revisit the TC measurements of turbulent
stresses and scalar variance, which have been plotted in figure 4(b) The two turbu-
lent stresses could be fitted by exponential functions in the range 8.4 < τ < 12.3,
with essentially identical exponents (0.130 for the streamwise stress and 0.127 for
the transverse stress). On the other hand, the temperature variance in the TC ex-
periments could not be fitted by an exponential expression and its local rate of
growth within the entire measuring range was substantially lower than the turbulence
growth rate. The most likely explanation for this discrepancy is that the initial level
of temperature fluctuations produced by the TC heating system (heating rods, rather
than the thin ribbons used in the present setup) was so high that it would require
a much larger development time for the asymptotic law, equation (6), to apply. The
persisting tendency towards an increase of the growth rate is demonstrated by the
TC measurements, in conformity with this hypothesis. The apparent ‘immaturity’ of
the TC temperature fluctuation field, as far as its growth rate is concerned, is not
necessarily a problem, because it has been amply demonstrated that, in uniformly
sheared flows, structural parameters, such as correlation coefficients, and the fine
structure are quick to adjust to their asymptotic states. For example, the low-shear
experiments of Champagne, Harris & Corrsin (1970) resulted in stresses that did not
achieve exponential growth within the available test section; however, the turbulence
anisotropies in these experiments achieved values that were not very different from
those in the higher-shear TC experiments. Similar observations were made by Hol-
loway & Tavoularis (1992) concerning the turbulence response to the introduction of
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a constant streamline curvature. A comparison of dimensionless parameters in the
present and the TC experiments (table 1) also shows that exponential growth of the
scalar variance is not necessarily a prerequisite for the scalar–turbulence interactions
and, particularly, the scalar fine structure to reach asymptotic behaviour.

The centreline shear stress correlation coefficient u1u2/u
′
1u
′
2 and the heat flux

coefficients u1θ/u
′
1θ
′ and u2θ/u

′
2θ
′, shown in figure 5, all achieved nearly constant

values in a large part of the facility, which started significantly upstream of the region
over which second moments grew exponentially. Compared to the present results, the
corresponding TC measurements, plotted on the same figure, show excellent agree-
ment for the shear stress (in both cases about −0.45 and reasonable agreement for
the heat fluxes (0.56 vs. 0.59 for the former and −0.50 vs. −0.45 for the latter).

Measurements of the streamwise integral lengthscale L11,1 (figure 6) could be fitted,
for 17.5 < τ < 23.0, by the exponential law

L11,1 = 0.0111 e0.0644τ mm.

The TC measurements of L11,1 also grew nearly exponentially. The integral lengthscale
ratios L22,1/L11,1 and Lθ1/L11,1, also plotted in figure 6, were nearly constant for
17.5 < τ < 23.0, taking asymptotic values of 0.37 and 0.74, respectively, which were
comparable to the TC values of 0.33 and 0.76.

The ratio of streamwise Corrsin and Taylor microscales λθ1/λ11 was 0.88, identical
to the TC value, while the ratio of the two Corrsin microscales λθ1/λθ2 was 0.66,
somewhat lower than the corresponding TC value of 0.73. The inequality of the
Corrsin microscales is evidence of a locally anisotropic scalar field.
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A point of some concern is that the scalar dissipation rate computed from the
balance of equation (5) was 0.80, which is substantially higher than the locally isotropic
estimate 0.57, based on the streamwise scalar derivative. The direct measurement of
the scalar dissipation rate (assuming that the spanwise mean-square derivative was
equal to the transverse one) was also higher than the locally isotropic estimate. This
discrepancy may be partially attributed to the local anisotropy of the scalar field. It
is interesting to note, however, that the ratios of the different estimates of the scalar
dissipation rates were very close to the corresponding values in the TC experiments
(table 1).

4.3. Probability density function

Figure 7 displays the p.d.f. of the streamwise and transverse velocity fluctuations and
scalar fluctuations at three downstream positions corresponding to Reλ = 184, 200
and 253. It may be seen that all p.d.f.s were close to the Gaussian one. In particular,
the scalar skewness and flatness were, respectively, −0.19± 0.06 and 3.15± 0.08 over
the range of Reλ considered, only slightly deviating from the Gaussian values. The
present results are in general agreement with the TC measurements of p.d.f.s at
comparable Reλ.

As noted in the introduction, there has been some controversy about the shape of
the tails of the scalar p.d.f.s. Besides TC, nearly Gaussian scalar p.d.f.s were observed
by among others, Thoroddsen & Van Atta (1992) in a stably stratified flow and
Overholt & Pope (1996) in their numerical simulation. On the other hand, scalar
p.d.f.s with exponential tails were observed in flows with a constant mean scalar
gradient by Gollub et al. (1991) in a stirred fluid, Jayesh & Warhaft (1991, 1992) in
grid turbulence, and Castaing et al. (1989) in high Rayleigh number convection. The
main conclusion of the latter experimental studies is that there exists a transitional
Reynolds number, above which the tails of the scalar p.d.f. would change from
Gaussian to exponential. Jayesh & Warhaft (1992) suggested that the transitional
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Figure 8. Isocontours of the joint p.d.f. of the scalar and (a) the streamwise and (b) the transverse
velocity fluctuations; solid lines indicate the corresponding contours of jointly Gaussian p.d.f. with
the same correlation coefficients as the measured ones.

Reynolds number ReL, based on the integral lengthscale, must be larger than 70. In
both the present and the TC experiments, ReL was much greater than this value (for
example, at Reλ = 253, ReL = 2, 380), without a hint of exponential tails. Furthermore,
the lack of exponential tails in the scalar p.d.f.s cannot be attributed to the limited
temperature range across the tunnel, because the present mean scalar profile extended
over nearly ±10 scalar standard deviations on either side of the measuring point;
for comparison, the mean scalar profile in the Jayesh & Warhaft (1991) experiments
extended about ±6 scalar standard deviations from their centreline. Another argument
(Warhaft 2000), that exponential tails of the scalar p.d.f. would only occur if the wind
tunnel-cross section extended by at least 8 integral lengthscales, also seems to be
contradicted by the present experiments, in which the ratio h/L11,1 varied from 14
to 6, while the ratio h/Lθ,1 varied from 30 to 8. It may be relevant to mention that
Jaberi et al. (1996) have concluded that the scalar p.d.f. would depend on the initial
conditions and, if a constant mean scalar gradient were imposed, the long-time p.d.f.
would become Gaussian.

4.4. Velocity–scalar joint statistics

Isocontours of the joint probability density functions of the temperature fluctuations
and the streamwise and transverse velocity fluctuations are shown in figure 8. In
agreement with the TC findings, both sets of contours displayed only minor differences
from the corresponding contours of the jointly normal p.d.f., also shown in the same
figure.

The conditional expectations of the velocity fluctuations conditional upon the
scalar, appearing in the transport equation of the scalar p.d.f. (equation (9)), have
received little attention experimentally and theoretically. Figure 9 displays these
parameters, normalized by the corresponding r.m.s. values as well as straight lines
with slopes equal to the corresponding correlation coefficients, representing jointly
Gaussian random processes. This figure clearly demonstrates that the measured values
of both conditional expectations adhered closely to the Gaussian lines, except possibly
at large deviations of the scalar fluctuations, for which the experimental uncertainty
is also increased. Nearly linear conditional expectations have also been observed
by Tong & Warhaft (1995) in a heated jet and by Overholt & Pope (1996) in a
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numerical simulation. Although the linearity of the conditional expectations does not
necessarily guarantee Gaussianity (Adrian et al. 1989), linearity is consistent with
the observed Gaussianity of the scalar p.d.f. and supports the previously presented
analytical solution for this p.d.f.

4.5. Statistics of scalar derivatives and differences

In contrast to the scalar fluctuations which were essentially Gaussian, the streamwise
and transverse derivatives of the scalar were strongly non-Gaussian, as shown by
their p.d.f. in figure 10. Both p.d.f.s displayed a very sharp peak and exponential-like
tails, which are indicative of internal intermittency of the scalar field. The difference
between the two p.d.f.s resides in their asymmetry: the p.d.f. of ∂θ/∂x1 had a negative
tail which was more flared than the positive one, whereas the opposite is observed in
the p.d.f. of ∂θ/∂x2.

Concerning the shape of the derivative p.d.f. tails, Holzer & Siggia (1994) suggested
an exponential fit as p∂θ/∂x1

= exp(−β |∂θ/∂x1|α). Because these authors considered
isotropic turbulence, their p.d.f. was symmetrical, with equal values of the coefficients
β = 2.5 and α = 0.66, for both the negative and the positive tails. In the present
case, the streamwise and transverse scalar derivative p.d.f.s were skewed and had
asymmetrical tails, thus requiring a different fit to each tail of each p.d.f. Such fittings
suggested that β = 1.9 and α = 0.78 for the negative tail and β = 2.1 and α = 0.82
for the positive tail of the p.d.f. of ∂θ/∂x1. The corresponding values for the p.d.f. of
∂θ/∂x2 were β = 2.0 and α = 0.87 for the negative tail and β = 1.9 and α = 0.72 for
the positive tail. The significance of the small differences among the present values
and those reported by the Holzer & Siggia (1994) is hard to evaluate.

The opposite asymmetries of the p.d.f.s of ∂θ/∂x1 and ∂θ/∂x2, also reflected by
the opposite signs of their skewness factors, requires some explanation. The shape
of p∂θ/∂x1

suggests that contributions from rare but large negative fluctuations of
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Figure 10. Probability density function of (a, c) the streamwise and (b, d) the transverse scalar
derivatives; dashed lines indicate Gaussian p.d.f.; (a) and (b) show the entire measured p.d.f. in
semilogarithmic axes, while (c) and (d ) show the central portions of the same p.d.f. in linear axes.

∂θ/∂x1 dominate those from large positive fluctuations, while the opposite may hold
for p∂θ/∂x2 . Within the narrow range of Reλ investigated, the measured skewness of
∂θ/∂x1 was nearly constant and equal to −1.0. This value is very close to the TC
value of −0.95 and within the scatter of data compiled by Sreenivasan & Antonia
(1997) from different shear flows. Non-zero skewness is evidence of local anisotropy.
The flatness of ∂θ/∂x1 was approximately 19 within the Reλ range covered. This
value was slightly higher than the value of 15 reported by TC but compares well
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with the data reported by Sreenivasan & Antonia (1997). One may also note that, at
a comparable Reλ, the flatness of ∂u1/∂x1 was much smaller (about 6.3, Ferchichi &
Tavoularis 2000), suggesting that the scalar field is more intermittent than the velocity
field.

Statistics of ∂θ/∂x2 were determined at a single location on the centreline of
the wind tunnel, at which Reλ = 200. The skewness of this parameter was about
1.5, comparable to measurements in other shear flows (TC; Sreenivasan et al. 1977;
Mestayer 1982). We point out, however, that values of this skewness measured in
grid turbulence with a constant mean scalar gradient were higher than those obtained
in shear flows. Tong & Warhaft (1994), Holzer & Siggia (1994) and Pumir (1994)
found this skewness to be about 1.9, independently of Reλ. Tong & Warhaft (1994)
suggested that large skewness in shearless turbulent flows is associated with the strong
correlation between u2 and θ in such flows. The flatness of ∂θ/∂x2 was about 13,
comparable to the values of 11 by TC and 10 by Mestayer (1982) in a turbulent
boundary layer at Reλ = 616. At a comparable Reλ, the flatness of ∂u1/∂x2 was found
to be about 8 (Ferchichi & Tavoularis 2000), considerably smaller than the scalar
derivative flatness, conforming with previous observations that the scalar field is more
intermittent than the velocity field.

4.6. Inertial-range measurements

Figure 11 is a plot of the one-dimensional spectra of the streamwise velocity, E11(κ1),
and the scalar fluctuations Eθ(κ1), vs. the dimensionless streamwise wavenumber
κ1η = 2πfη/Uc (f is the frequency; Reλ = 253). Both spectra are shown multiplied
by powers of κ1, with the exponents selected such as to present the longest possible
plateaux, which presumably define the inertial range. The most suitable values of the
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exponents were found to be n = 1.50 for the velocity spectrum and m = 1.24 for the
scalar spectrum. Both values are lower than the Kolmogorov value of 5/3, with the
scalar spectrum being more distant from the Kolmogorov value. The extents of both
inertial ranges were about 1.5 decades, although the scalar inertial range was slightly
narrower than the velocity one.

Figure 12 presents plots of the p.d.f. of the streamwise and transverse scalar
differences, for varying separations ri/η within the inertial range. It can be seen
from these plots that, even for relatively large separation distances, the p.d.f.s have
sharp peaks and exponential-like tails, consistently with the expected intermittency
of the scalar field in the inertial range. This is corroborated by the plots of the
corresponding flatness of the scalar differences (figure 13), which decreased, at large
separation distances, from the flatnesses of the corresponding derivatives towards the
Gaussian value 3.0. This suggests that the scalar internal intermittency became more
pronounced as the separation distance decreased. Note that, for all ri/η, the measured
flatness of the streamwise scalar difference was higher than that of the transverse
scalar difference. Figure 13 also includes plots of the flatness of the streamwise
velocity differences at Reλ comparable to those of the scalar plots. In all cases
the scalar flatness was significantly higher than the corresponding velocity flatness,
pointing to a higher intermittency of the scalar field. Finally, figure 14 shows the
skewnesses of the streamwise and transverse scalar differences for varying ri/η. Both
decreased monotonically with increasing ri/η, in conformity with the trends observed
by Mydlarski & Warhaft (1998). An interesting observation is that, although the
magnitude of the skewness of the scalar differences for streamwise separations lower
than a certain value (ri/η < 80 for Reλ = 200) was higher than that for the same
value of transverse separation, the opposite was observed for higher ri/η; apparently,



176 M. Ferchichi and S. Tavoularis

20

10

8

6

5

4

3

2
1 10 100

r1/η

(a) 20

10

8

6

5

4

3

2
1 10 100

r2/η

(b)

Figure 13. Measurements of the flatness factors of the velocity (solid symbols) and scalar (open
symbols) differences for (a) streamwise and (b) transverse separations; Reλ = 172 (�), 200 ( e), 253
(�) and 264 (•).
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Figure 14. Measurements of the skewness (in magnitude only) of scalar differences for streamwise
separations (Reλ = 200 ( e) and 253 (�)) and transverse separations (Reλ = 200 (•)).

this is related to the fact that integral lengthscales in the streamwise direction are
larger than those in the transverse direction.

4.7. Joint statistics of the scalar and its dissipation rate

Local isotropy requires that the fine structure of the scalar field should be statistically
independent of the motions that contribute mostly to the scalar variance. A necessary,
although not sufficient, condition for independence is the vanishing of the correlation
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Figure 15. Probability density function of the scalar dissipation rate; Reλ = 253.

coefficient between the scalar fluctuations and their destruction rate (Jayesh & Warhaft
1992)

ρθ2εθ =
(θ2 − θ2)(εθ − χ)

(θ2 − θ2)2
1/2

(εθ − χ)2
1/2
.

This correlation coefficient was measured by approximating the mean thermal
destruction rate by its locally isotropic expression χli based on the streamwise scalar
derivative. For all cases examined, this correlation coefficient was, in magnitude, less
than 0.02, which is sufficiently low for the necessary condition for independence to
apply.

Further insight into the statistical independence of θ and εθ can be inferred by
evaluating their coherence function, defined as the cross-spectrum of these parameters
normalized by the square roots of the corresponding frequency spectra. The magnitude
of this coherence function (not shown here), measured at Reλ = 200 and 253, up to
a frequency equal to twice the frequency corresponding to the Taylor microscale
(thus more than covering the inertial range) was less than 0.02 within the examined
frequency range. This is further indication that θ and εθ are essentially independent
in the present flow configuration.

A stronger test of the statistical independence of θ and εθ may be made by
considering their joint p.d.f. Statistical independence requires that

p(θ, εθ) = p(θ)p(εθ). (19)

Figure 15 displays the p.d.f. of εθ (based on the streamwise scalar derivative) and
indicates that, although values near the average have the highest probability, large
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Figure 16. Comparison of four isocontours of the joint p.d.f. of the scalar and its dissipation rate
(scattered dots) and the corresponding isocontours of the product of the p.d.f. of the scalar and the
p.d.f. of its dissipation rate (continuous lines); numbers in the graph indicate the values of the p.d.f.
for each pair of isocontours.

positive fluctuations in εθ , up to 25 times its standard deviation, also occur, but with
low probability. Iso-probability contours of p(θ, εθ) are displayed in figure 16. These
contours are nearly symmetrical with respect to the mean of the scalar fluctuations,
suggesting that the fluid is well mixed and that the scalar dissipation gets nearly equal
contributions from the negative and the positive scalar fluctuations. Contours of the
product p(θ)p(εθ), also plotted in figure 16, essentially collapsed on the corresponding
contours of p(θ, εθ), which validates equation (19) and, hence, proves the independence
of θ and εθ .

Another quantity of interest is the conditional expectation of the scalar dissipation
rate 〈εθ|θ〉, conditional upon the scalar, which appears in the transport equation of
the scalar p.d.f. (equation (10)). Measurements of this parameter, shown in figure 17
in the usual normalized form, were within ±10% of 1.0 for |θ/θ′| < 2, although
displaying substantial scatter for |θ/θ′| > 2. The level of scatter is consistent with the
number of experimental values used to calculate each value of 〈εθ|θ〉: about 400 000
points at θ/θ′ = 0, but only a few hundred points at θ/θ′ = ±4. Uncertainty bars
have been added to the set of data that displays the largest scatter. The limit values
of these bars enclose, at the 95% confidence level, the ranges of average values of
〈εθ|θ〉 at a given θ/θ′ that would most likely be obtained if the data populations
contained infinite samples. It is clear that 〈εθ|θ〉/χ ' 1 within the measurement
uncertainty.

Based on the above tests, it seems reasonable to conclude that the conditional ex-
pectation of the scalar dissipation rate in uniformly sheared turbulence is independent
of the scalar value. As discussed in the introduction, such independence has also been
observed in several other well-mixed homogeneous and non-homogeneous turbulent
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Figure 17. Conditional expectation of the scalar dissipation rate, conditioned upon the scalar
value; Reλ = 200 ( e) and 253 (�); error bars have been added to the Reλ = 200 data.

flows, both experimentally and computationally (e.g. Anselmet et al. 1994; Mi et al.
1995; Overholt & Pope 1996). A departure from this conclusion is the measurements
of εθ by Jayesh & Warhaft (1992), which displayed a V-shape when conditioned upon
the scalar.

5. Conclusions
The objective of the present study was to examine in detail the probability density

function and the fine structure of a scalar field that was introduced passively in
uniformly sheared turbulent flow. The flow configuration was essentially the same as
the one studied by Tavoularis & Corrsin (1981a, b), with a uniform mean temperature
gradient imposed on the flow by heating electric elements. An advantage over the
TC flow was the generation of a higher shear parameter, resulting in more vigorous
turbulence production, a higher turbulence intensity and a nearly double total mean
strain on the turbulence in the measuring section. Another advantage was the use
of fine heating ribbons, rather than heating rods, which introduced a milder initial
scalar injection. This, in combination with the stronger scalar fluctuation production,
resulted in a complete decoupling of the scalar field from its initial condition and
allowed the scalar fluctuations to grow in a self-similar fashion and at the same
exponential rate as the turbulence, as predicted by an analytical solution of the scalar
variance equation. Other than that, however, the structures of the turbulence and the
scalar field were quite comparable to those in the TC experiments; both flows were
at comparable turbulence Reynolds numbers, in the vicinity of 250.

An analytical examination of the scalar p.d.f. equation in uniformly sheared flow
with a constant mean scalar gradient, taking into consideration some experimental
evidence, has concluded that the scalar p.d.f. must be Gaussian. Measurements of the
scalar p.d.f. also clearly indicate that it was essentially Gaussian. The joint p.d.f.s of
the scalar and the velocity fluctuations were also essentially jointly Gaussian, with the
conditional expectations of the velocity fluctuations linearly dependent on the scalar
value.

Probability density functions of scalar derivatives in both the streamwise and
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the transverse directions were strongly non-Gaussian and skewed, displaying flared,
asymmetric tails. Probability density functions of scalar differences for separations
in the inertial range were also strongly non-Gaussian. All measurements in both the
dissipative and the inertial ranges point to a highly intermittent scalar fine structure,
and, in fact, more intermittent than the fine structure of the turbulence. Finally, joint
statistics of the scalar and its dissipation rate demonstrate a statistical independence
of the two parameters.

It is hoped that the present findings will help clarify the contested hypotheses that
have been put forward to describe the p.d.f. and the fine structure of passive scalars
mixed by turbulent shear flows.

Financial support has been provided by the Natural Sciences and Engineering
Research Council of Canada. We thank Professor Stephen B. Pope for helping us to
prove the uniqueness of the Gaussian function as a solution of equation (17).
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